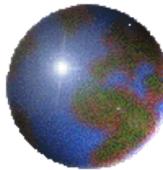


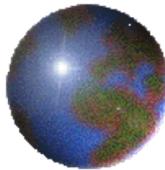
Safety Instrumented Systems


ANGELA E. SUMMERS, PH.D., P.E.
SIS-TECH Solutions, LLC

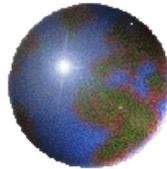
We're Proven-in-Use.

Terminology

- Critical Control Systems
- Safety Shutdown Systems
- Protective Instrumented Systems
- Equipment Protection Systems
- Emergency Shutdown Systems
- Safety Critical Systems
- Interlocks
- Safety Instrumented Systems

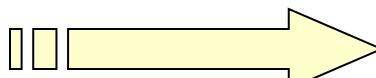

What is a Safety Instrumented System (SIS)?

- An SIS is designed to:


- respond to conditions in the plant which may be hazardous in themselves or,
- if no action was taken, could eventually give rise to a hazard, and
- to respond to these conditions by taking defined actions that either prevent the hazard or mitigate the hazard consequences.

- Input ----- Logic Solver ----- Output

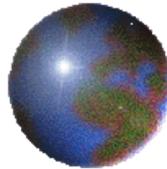
Examples of Safety Instrumented Systems


- High fuel gas pressure furnace initiates shutdown of main fuel gas valves.
- High reactor temperature initiates fail open action of coolant valve.
- High column pressure initiates fail open action of pressure vent valve.

OSHA & EPA

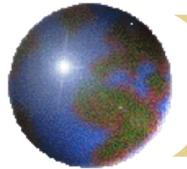
Process Safety Management

SIF included here


Emergency Shutdown
Systems, Control, Relief
Systems

Written Internal
Guidelines

Mentor/Engineering
Practices


Industry Codes
& Standards

GOOD ENGINEERING PRACTICE

Standards Bodies that Define Good Engineering Practice for Safety Instrumented Systems

- ISA, Instrumentation Systems and Automation Society
- IEC, International Electrotechnical Commission

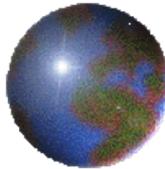
Other standards and guidelines must be integrated with SIS standards!

NFPA

ISA 84.01-2003

API

IEC 61508


ASME

IEC 61511

Boiler Codes

ISO

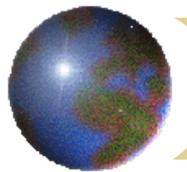
**AICHE
Books**

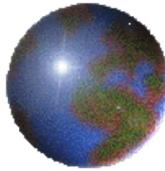
Safety Instrumented System Standards

IEC 61508 - “Functional Safety: Safety Related Systems”

Current version released 1999

Under revision for next release 2005

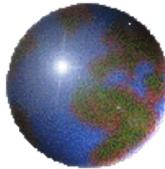

IEC 61511 - “Functional Safety: Safety Instrumented Systems for the Process Industry Sector”


Published 2003

ISA 84.01-2003 - “Functional Safety: Safety Instrumented Systems for the Process Industry Sector”

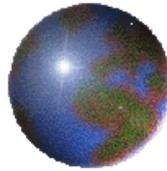
Identical to IEC 61511 with inclusion of grandfather clause

To be published October 2003

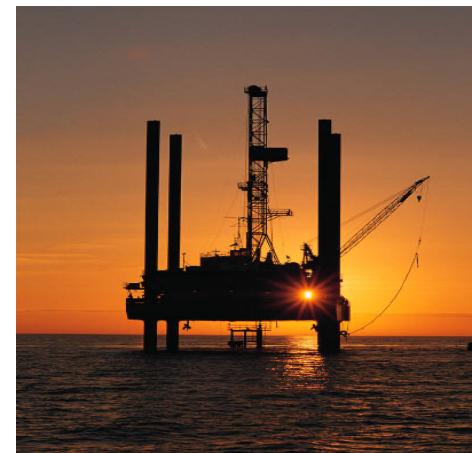


Manage risk - People

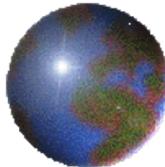
- Identify role of individual or departments
 - Who is assigned to project?
 - What are their roles?
- Document competency of individuals and departments
 - Does anyone need more training?
 - Who will mentor inexperienced engineers?
 - Who will review and approve?


This is good project management.

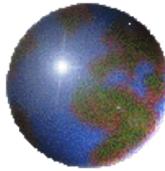
Manage risk – Procedures


- Define when the following will take place:
 - Verifications,
 - Audits, and
 - Validation.
- Require procedures for evaluating the performance of the SIS after it has been installed
 - Performance audits and
 - Tracking failures rates.

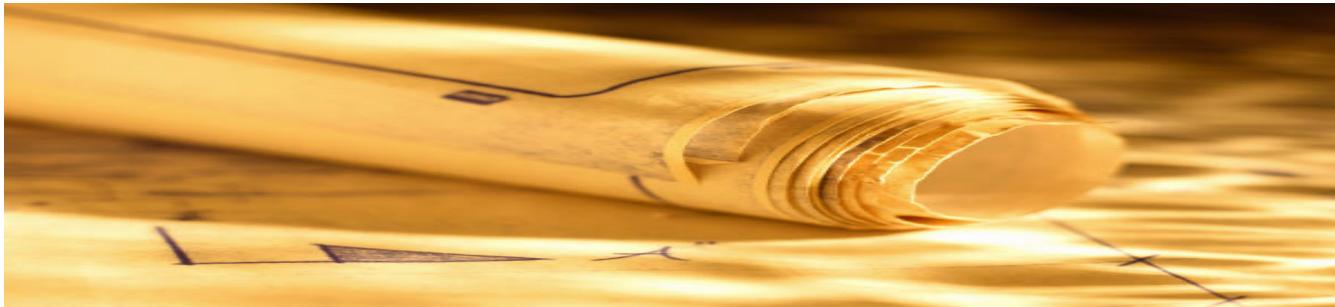
This is good quality control.

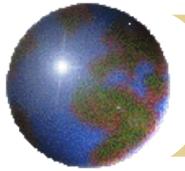

Assess risk and mitigate it

- Will talk about the “how to” later
- The assessment results in the assignment of Safety Integrity Level


Safety Integrity Level

SIL	PF_{avg}	Risk Reduction	Availability (%)
4	10^{-4} to 10^{-5}	10,000 to 100,000	99.99 to 99.999
3	10^{-3} to 10^{-4}	1,000 to 10,000	99.9 to 99.99
2	10^{-2} to 10^{-3}	100 to 1,000	99 to 99.9
1	10^{-1} to 10^{-2}	10 to 100	90 to 99


- Let's talk about Risk.
- What is your wager?
- How many times do you place the wager each year?
- What are your odds of losing your wager?



Design SIF

- Justify selection of devices
- Document the safety requirements specification
- Design SIFs to achieve Safety Integrity Level.

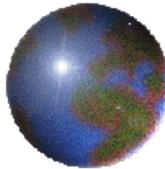
Prove it

● Verify

- Safety Integrity Level
- Fault tolerance

● Commissioning

- Install SIFs per design documents

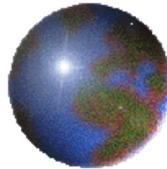

● Functional safety assessment

- Make sure all documents are in place and all hazards analysis items are addressed.

● Validation

- Test SIFs to ensure that they have desired functionality

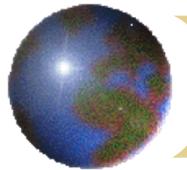
Maintain it



❖ Operation, maintenance and testing

- Use diagnostics and testing to maintain performance
- Create and maintain procedure to support these activities
- Train personnel on procedures

❖ Management of change


- Monitor changes to SIS that might affect SIL

Audit it

- Includes design and procedures
- Define frequency of audits
- Determine the degree of independence of auditing activity
- Document audit
- Define follow-up activities

